Wednesday, August 24, 2016

Charging Lead Acid Batteries

Learn how to optimize charging conditions to extend service life.
The lead acid battery uses the constant current constant voltage (CC/CV) charge method. A regulated current raises the terminal voltage until the upper charge voltage limit is reached, at which point the current drops due to saturation. The charge time is 12–16 hours and up to 36–48 hours for large stationary batteries. With higher charge currents and multi-stage charge methods, the charge time can be reduced to 8–10 hours; however, without full topping charge. Lead acid is sluggish and cannot be charged as quickly as other battery systems. (See BU-202: New Lead Acid Systems.)

Lead acid batteries should be charged in three stages, which are [1] constant-current charge, [2] topping charge and [3] float charge. The constant-current charge applies the bulk of the charge and takes up roughly half of the required charge time; the topping charge continues at a lower charge current and provides saturation, and the float charge compensates for the loss caused by self-discharge.

During the constant-current charge, the battery charges to about 70 percent in 5–8 hours; the remaining 30 percent is filled with the slower topping charge that lasts another 7–10 hours. The topping charge is essential for the well-being of the battery and can be compared to a little rest after a good meal. If continually deprived, the battery will eventually lose the ability to accept a full charge and the performance will decrease due to sulfation. The float charge in the third stage maintains the battery at full charge. Figure 1 illustrates these three stages.
Charge stages of a lead acid battery
Figure 1: Charge stages of a lead acid battery.
The battery is fully charged when the current drops to a set low level. The float voltage is reduced.  Float charge compensates for self-discharge that all batteries exhibit.
Courtesy of Cadex
The switch from Stage 1 to 2 occurs seamlessly and happens when the battery reaches the set voltage limit. The current begins to drop as the battery starts to saturate; full charge is reached when the current decreases to 3–5 percent of the Ah rating. A battery with high leakage may never attain this low saturation current, and a plateau timer takes over to end the charge.

The correct setting of the charge voltage limit is critical and ranges from 2.30V to 2.45V per cell. Setting the voltage threshold is a compromise and battery experts refer to this as “dancing on the head of a needle.” On one hand, the battery wants to be fully charged to get maximum capacity and avoid sulfation on the negative plate; on the other hand, over-saturation by not switching to float charge causes grid corrosion on the positive plate. This also leads to gassing and water-loss.

Temperature changes the voltage and this makes “dancing on the head of a needle” more difficult. A warmer ambient requires a slightly lower voltage threshold and a colder temperature prefers a higher setting. Chargers exposed to temperature fluctuations include temperature sensors to adjust the charge voltage for optimum charge efficiency.

The charge temperature coefficient of a lead acid cell is –3mV/°C. Establishing 25°C (77°F) as the midpoint, the charge voltage should be reduced by 3mV per cell for every degree above 25°C and increased by 3mV per cell for every degree below 25°C. If this is not possible, it is better to choose a lower voltage for safety reasons. Table 2 compares the advantages and limitations of various peak voltage settings.

2.30V to 2.35V/cell
2.40V to 2.45V/cell
Advantages
Maximum service life; battery stays cool; charge temperature can exceed 30°C (86°F).
Higher and more consistent capacity readings; less sulfation.
Limitations
Slow charge time; capacity readings may be inconsistent and declining with each cycle. Sulfation may occur without equalizing charge.
Subject to corrosion and gassing. Needs water refill. Not suitable for charging at high room temperatures, causing severe overcharge.
Table 2: Effects of charge voltage on a small lead acid battery.
Cylindrical lead acid cells have higher voltage settings than VRLA and starter batteries.

Once fully charged through saturation, the battery should not dwell at the topping voltage for more than 48 hours and must be reduced to the float voltage level. This is especially critical for sealed systems because they are less tolerant to overcharge than the flooded type. Charging beyond the specified limits turns redundant energy into heat and the battery begins to gas.

The recommended float voltage of most flooded lead acid batteries is 2.25V to 2.27V/cell. Large stationary batteries at 25°C (77°F) typically float at 2.25V/cell. Manufacturers recommend lowering the float charge when the ambient temperature rises above 29°C (85°F).

Not all chargers feature float charge and very few road vehicles have this provision. If your charger stays on topping charge and does not drop below 2.30V/cell, remove the charge after 48 hours of charging. Recharge every 6 months while in storage; AGM every 6–12 months.

These described voltage settings apply to flooded cells and batteries with a pressure relief valve of about 34kPa (5psi). Cylindrical sealed lead acid, such as the Hawker Cyclon cell, requires higher voltage settings and the limits should be set to manufacturer’s specifications. Failing to apply the recommended voltage will cause a gradual decrease in capacity due to sulfation. The Hawker Cyclon cell has a pressure relief setting of 345kPa (50psi). This allows some recombination of the gases generated during charge.

Aging batteries pose a challenge when setting the float charge voltage because each cell has its own unique condition. Connected in a string, all cells receive the same charge current and controlling individual cell voltages as each reaches full capacity is almost impossible. Weak cells may go into overcharge while strong cells remain in a starved state. A float current that is too high for the faded cell might sulfate the strong neighbor due to undercharge. Cell-balancing devices are available compensate for the differences in voltages caused by cell imbalance.

Ripple voltage also causes a problem with large stationary batteries. A voltage peak constitutes an overcharge, causing hydrogen evolution, while the valley induces a brief discharge that creates a starved state resulting in electrolyte depletion. Manufacturers limit the ripple on the charge voltage to 5 percent.

Much has been said about pulse charging of lead acid batteries to reduce sulfation. The results are inconclusive and manufacturers as well as service technicians are divided on the benefit. If sulfation could be measured and the right amount of pulsing applied, then the remedy could be beneficial; however giving a cure without knowing the underlying side effects can be harmful to the battery.

Most stationary batteries are kept on float charge and this works reasonably well. Another method is thehysteresis charge that disconnects the float current when the battery goes to standby mode. The battery is essentially put in storage and is only “borrowed” from time to time to apply a topping-charge to replenish lost energy due to self-discharge, or when a load is applied. This mode works well for installations that do not draw a load when on standby.

Lead acid batteries must always be stored in a charged state. A topping charge should be applied every 6 months to prevent the voltage from dropping below 2.05V/cell and causing the battery to sulfate. With AGM, these requirements can be relaxed.

Measuring the open circuit voltage (OCV) while in storage provides a reliable indication as to the state-of-charge of the battery. A cell voltage of 2.10V at room temperature reveals a charge of about 90 percent. Such a battery is in good condition and needs only a brief full charge prior to use. (See also BU-903: How to Measure State-of-charge.)

Observe the storage temperature when measuring the open circuit voltage. A cool battery lowers the voltage slightly and a warm one increases it. Using OCV to estimate state-of-charge works best when the battery has rested for a few hours, because a charge or discharge agitates the battery and distorts the voltage.

Some buyers do not accept shipments of new batteries if the OCV at incoming inspection is below 2.10V per cell. A low voltage suggests a partial charge due to long storage or a high self-discharge caused by a micro-short. Battery users have found that a pack arriving at a lower than specified voltage has a higher failure rate than those with higher voltages. Although in-house service can often bring such batteries to full performance, the time and equipment required adds to operational costs. (Note that the 2.10V/cell acceptance threshold does not apply to all lead acid types equally.)

Watering

Watering is the single most important step in maintaining a flooded lead acid battery; a requirement that is all too often neglected. The frequency of watering depends on usage, charge method and operating temperature. Over-charging also leads to water consumption.

A new battery should be checked every few weeks to estimate the watering requirement. This assures that the top of the plates are never exposed. A naked plate will sustain irreversible damage through oxidation, leading to reduced capacity and lower performance.

If low on electrolyte, immediately fill the battery with distilled or de-ionized water. Tap water may be acceptable in some regions. Do not fill to the correct level before charging as this could cause an overflow during charging. Always top up to the desired level after charging. Never add electrolyte as this would upset the specific gravity and promote corrosion. Watering systems eliminate low electrolyte levels by automatically adding the right amount of water.

Simple Guidelines for Charging Lead Acid Batteries

  • Charge in a well-ventilated area. Hydrogen gas generated during charging is explosive. (SeeBU-703: Health Concerns with Batteries)
  • Choose the appropriate charge program for flooded, gel and AGM batteries. Check manufacturer’s specifications on recommended voltage thresholds.
  • Recharge lead acid batteries after each use to prevent sulfation. Do not store on low charge.
  • The plates of flooded batteries must always be fully submerged in electrolyte. Fill the battery with distilled or de-ionized water to cover the plates if low. Never add electrolyte.
  • Fill water level to designated level after charging. Overfilling when the battery is on low charge can cause acid spillage during charging.
  • The formation of gas bubbles in a flooded lead acid indicates that the battery is reaching full state-of-charge. (Hydrogen appears on negative plate and oxygen on positive plate).
  • • Lower the float charge voltage if the ambient temperature is higher than 29°C (85°F)..
  • Do not allow a lead acid to freeze. An empty battery freezes sooner than one that is fully charged. Never charge a frozen battery.
  • Avoid charging at temperatures above 49°C (120°F).

Saturday, August 20, 2016

Why is My 12 Volt Battery Reading as 13 Volts?


Inside diagram of Lead acid battery
All Lead acid batteries (Gel, AGM, Flooded, Drycell, etc) are made up of a series of 2.2 volt cells that are bridged together in series to reach their final desired voltage. For instance, a 6 volt battery will have 3 cells (3 x2.2= 6.6 volts), a 12 volt battery will have 6 cells (6 x2.2=13.2 volts) and so on.That 2.2 volts is the fully charged, straight off the charger number. The actual resting voltage, or the voltage a battery will settle at 12-24 hours after being removed from the charger, is closer to 2.1 volts per cell, or about 6.4 volts for a 6v battery, and 12.7 volts for a 12v battery. These numbers assume 100% healthy cells, and may vary a bit lower for older batteries.
- See more at: https://www.batterystuff.com/kb/frequently-asked-questions/powersports-batteries-faq/12-volt-battery-reading-13-volts.html#sthash.dqJCUiJw.dpuf

Thursday, August 18, 2016

Still A Popular Replacement Battery For The Bullard T1 Thermal Imaging Camera:

The AG55547 NiCad battery is still one of our most popular replacement batteries for the Bullard Thermal T1 Commander Camera, This product delivers 10v/1200mAh and is NiCD.

NOTE: It Is NOT compatible with the Bullard T3 Series Camera.




Tuesday, August 16, 2016

Do You Need Find Replacement Parts for Your Streamlight Vulcan or Fire Vulcan Lantern?  

Click on this diagram or link where you can hover over a part and link to the  description and price at AGTBattery.com
vulcan lantern parts diagram
Here is our link to the Streamlight Vulcan Parts Diagram. 

Thursday, August 11, 2016

Need to Replace A Broken Lens On Your LiteBox Lantern or Vulcan Lantern.
This replacement part is the "Spot light" reflector lens tha tfits the Streamlight LiteBox, Vulcan or Fire Vulcan laterns.  IT is the lens only. Typical replacement when the plastic lens gets broken.

You can find this replacement part at AGTBattery.com
Part # 44070


Thursday, August 4, 2016


Here's what the Minitor VI Motorola Original replacement battery looks like.


Minitor 6 pager battery at AGT Battery Supply

Tuesday, August 2, 2016

Here is a video showing the packaging for PC-AAA Duracell Procell PC2400 alkaline batteries.  It helps with knowing minimum order quantities and how many batteries per carton and case.



Thanks for watching, hope it answered your questions on quantities to order for Duracell Procell PC2400.

Monday, August 1, 2016

How To Read Date Codes on Your Motorola Two-Way Radio Battery

Our YouTube Instructional Video:

The date code for Motorola original two way radio batteries is found on the label as shown in our YouTube video.  Usually you will see the battery part number on the left above the product bar code. To the right side of the product number is the date code.  in the example below date code reads 1325. 

13= year 2013 and 25= the 25th week of that year. 


Charging Li Ion (Lithium Ion) Rechargeable Batteries


The rechargeable Li-ion battery does not like prolonged storage. Irreversible capacity loss occurs after 6 to 12 months, especially if the battery is stored at full charge and at warm temperatures.
It is often necessary to keep a battery fully charged as in the case of emergency response, public safety and defense. Running a laptop (or other portable device) continuously on an external power source with the battery engaged will have the same effect. 
The combination of a full charge condition and high temperature cannot always be avoided. Such is the case when keeping a spare battery in the car for a mobile phone. 

Saturday, April 11, 2015

R.I.P. Officer Moody: A Patch Editor Remembers

by Karen Wall
(Berkeley Patch)
It was just my second night at Wawa when I met Dave Moody for the first time.
The Berkeley Township police officer had stopped in for coffee and to chat with Nicole, the shift manager who was training me on the overnights.
“Moody!” she half-yelled, a smile spreading over her face. I quickly learned that she didn’t have much patience for most of the customers who came in at night, but Moody was different, and a night without a visit from him was a little empty. And pretty rare, limited only to the most busy nights in town.
Over the next three years — and two stints — I got to know Officer David Moody from his visits to the store. He always walked in with a smile and could be counted on for a sarcastic comment that was guaranteed to make us laugh, even on the most stressful nights.
When I heard Monday that he had died, my heart broke. I’m not related to him in any way, but ask anyone who works an overnight shift and they’ll tell you — there is a sense of family that comes from being part of that particular slice of the working world. You develop relationships with the folks who work the wee hours of the night — especially the police officers. You want to know them, need to know them, and there’s a sense of comfort that develops because you know if you really need to call them, they will be there for you. And you knew they were watching out for you.
I talked with most of the officers — they all knew I had spent most of my career in journalism. We always kept conversations to family because I wasn’t there looking for a scoop; I was there to do the Wawa job.
Officer Moody was no different. We talked about the entertaining side of raising daughters. He beamed as he showed photos and videos of his girls, spoke with pride about his wife. And he would ask how my daughter was doing with her sports pursuits.
And then we would have some laughs over customers who — for whatever reason — had given us material to laugh about. It was a quirky existence to be sure.
On the nights we didn’t see him or the others, we prayed. Prayed that they were safe. Prayed that they weren’t dealing with much beyond fools who were drunk but mostly harmless.
There was one night when we prayed twice as hard: Four officers, including Officer Moody, were chasing a suspect up and down Route 9. We watch them fly past the store, and I prayed for their safety.
As the situation unfolded,we followed the event via a police scanner app on my phone, looking for anything that would tell us what was going on.
And I remember praying. Not just because they were police officers putting their lives on the line, but because they were friends.
I remember hearing that the driver they had been chasing had rammed his truck into the officers’ vehicles, and that there were injuries. And I prayed even harder that the Moody and the others were going to be OK.
Because they were and are part of my community.
I remember my relief later when we learned no one had life-threatening injuries.
Moody loved to customer-watch with us, and on that overnight shift we got some doozies. Some of the experiences were so odd I immortalized them in a blog — and Moody made it into the blog on one bizarre TMI occasion involving a customer’s purchase of energy drinks. What Moody didn’t say in words, he could convey in facial expressions with a big grin and raised eyebrows — and if you’d spent much time talking with him, you had a good idea what those raised eyebrows meant.
Officer Moody made a lot of people laugh. And for those of us who had the pleasure to talk with him regularly on the overnight shift, the memory of his smile and his wit will endure.
His death — 36 is just not enough years on this earth — is a terrible loss, and my heart goes out to his family.
Rest in peace, Moody. You will be missed.